Localization of metallothionein-I and -III expression in the CNS of transgenic mice with astrocyte-targeted expression of interleukin 6.

نویسندگان

  • J Carrasco
  • J Hernandez
  • B Gonzalez
  • I L Campbell
  • J Hidalgo
چکیده

The effect of interleukin-6 (IL-6) on metallothionein-I (MT-I) and MT-III expression in the brain has been studied in transgenic mice expressing IL-6 under the regulatory control of the glial fibrillary acidic protein gene promoter (GFAP-IL6 mice), which develop chronic progressive neurodegenerative disease. In situ hybridization analysis revealed that GFAP-IL6 (G16-low expressor line, and G36-high expressor line) mice had strongly increased MT-I mRNA levels in the cerebellum (Purkinje and granular layers of the cerebellar cortex and basal nuclei) and, to a lesser degree, in thalamus (only G36 line) and hypothalamus, whereas no significant alterations were observed in other brain areas studied. Microautoradiography and immunocytochemistry studies suggest that the MT-I expression is predominantly localized to astrocytes throughout the cerebrum and especially in Bergman glia in the cerebellum. However, a significant expression was also observed in microglia of the GFAP-IL6 mice. MT-III expression was significantly increased in the Purkinje cell layer and basal nuclei of the cerebellum, which was confirmed by Northern blot analysis of poly(A)+ mRNA and by ELISA of the MT-III protein. In contrast, in the G36 but not G16 mice, transgene expression of IL-6 was associated with significantly decreased MT-III RNA levels in the dentate gyrus and CA3 pyramidal neuron layer of the hippocampus and, in both G36 and G16 mice, in the occipital but not frontal cortex and in ependymal cells. Thus, both the widely expressed MT-I isoform and the CNS specific MT-III isoform are significantly affected in a MT isoform- and CNS area-specific manner in the GFAP-IL6 mice, a chronic model of brain damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6.

Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) causes significant damage and alters the expression of many genes, including a dramatic upregulation of metallothionein-I (MT-I). The findings in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important...

متن کامل

Metallothioneins are upregulated in symptomatic mice with astrocyte-targeted expression of tumor necrosis factor-alpha.

Transgenic mice expressing TNF-alpha under the regulatory control of the GFAP gene promoter (GFAP-TNFalpha mice) exhibit a unique, late-onset chronic-progressive neurological disorder with meningoencephalomyelitis, neurodegeneration, and demyelination with paralysis. Here we show that the metallothionein-I + II (MT-I + II) isoforms were dramatically upregulated in the brain of symptomatic but n...

متن کامل

Detection of Interleukin-19 mRNA in C57BL/6 Mice Astroglial Cells and Brain Cortex

Introduction: Astrocytes are the most abundant glial cell type. In addition to their neurological roles, astrocytes also have immune functions. They have been involved in antigen presentation in the central nervous system (CNS). Activated astrocytes express adhesion molecules, chemokines and release several inflammatory mediators, pro-inflammatory cytokines, neurotrophic and neuroprotective fac...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 153 2  شماره 

صفحات  -

تاریخ انتشار 1998